
Introduction to Symfony2
#symfony2workshop

Agenda

Time

09:00 Doors Open

10:00 Introduction to Symfony
Presentation (1:00 hour)

11:00 Workshop Part 1 (2:00 hour)

13:00 Lunch and Q&A (1 hour)

14:00 Workshop Part 2 (2:00 hour)

16:00 Close

What Symfony is not

• An MVC framework

• Magic

• Written in French

• “Low Level” Code

• Only suitable for “Enterprise” applications

It is… a collection of pretty
awesome decoupled tools

for web app development… Assert

Console

Routing

Form

Security

25 to date

combine it with some other
independent tools and you

have a pretty epic HTTP
framework

Symfony

Doctrine

Twig

SwiftmailerAssetic

Monolog

The Symfony Profiler

The not-so-secret weapon on every page to inspect every element of the web app

Symfony is also… a methodology

• Think of it to your code like an orthopaedic chair is to your back…

• Lastly it is a community… People that have adopted the methodology and
genuinely think this is a positive change

Doctrine
Pretty awesome when it works

Doctrine

DBAL

• PDO “like”, it abstracts the database.

• Also supports management of schema, can
create, update and drop columns and tables.

• Supports: MySQL, Oracle, MSSQL,
PostgreSQL, SAP Sybase SQL Anywhere,
SQLite, Drizzle

ORM

• Uses the DQL to query and manipulate the DB.

• Provides an easy to use model for your
controllers and services to manipulate.

• Uses annotations on properties within your
PHP model (entities) and relationships
between them to create and manage your
schema

Documentation

• Available at: http://docs.doctrine-project.org/projects/doctrine-
dbal/en/latest/reference/introduction.html

• Documentation is thorough but difficult to digest

• Caution: When Googling Doctrine related information, the results are
littered with older information.

http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/reference/introduction.html

Watch your namespaces in annotations

Doctrine Documentation

/**

* @OneToOne(targetEntity="Shipping")

* @JoinColumn(name="shipping_id",

* referencedColumnName="id")

*/

private $shipping;

Your Code in Symfony
use Doctrine\ORM\Mapping as ORM

/**

* @ORM\OneToOne(targetEntity="Shipping")

* @ORM\JoinColumn(name="shipping_id",

* referencedColumnName="id")

*/

private $shipping;

Using Doctrine to update your SQL Schema

• You have already defined your entities and attached annotations to the
properties

• Doctrine can keep your PHP Model and your SQL Schema in sync

• Relationships between entities have already been defined

Entities

• To mark a PHP class as being an entity you use
the @ORM\Entity() annotation.

• By default Doctrine will apply defaults such as
setting the DB table name as the unqualified
class name

• You can override this by specifying your own
table name using @ORM\Table() annotation

use Doctrine\ORM\Mapping as ORM

/**
* @ORM\Entity
* @ORM\Table(name=“address")
*/
class CustomerAddress
{

//...
}

Property Mapping

• You can specify that a PHP class property to be
persisted to the database by using the
@ORM\Column annotation.

• This annotation will assume defaults
(type=string), so it’s always best to override.

• All built in property types are portable across
databases.

• Each property type can have specific attributes
depending on the nature of the property.

• If all the built-in types do not fit your application,
you can build your own.

use Doctrine\ORM\Mapping as ORM
/**
* @ORM\Entity
* @ORM\Table(name=“address")
*/
class CustomerAddress
{
/**
* @ORM\Column(name=“postcode”,length=“8”)
*/
private $postcode

}

Available Property Types

Types
• string: Type that maps an SQL VARCHAR to a PHP string.

• integer: Type that maps an SQL INT to a PHP integer.

• smallint: Type that maps a database SMALLINT to a PHP integer.

• bigint: Type that maps a database BIGINT to a PHP string.

• boolean: Type that maps an SQL boolean to a PHP boolean.

• decimal: Type that maps an SQL DECIMAL to a PHP double.

• date: Type that maps an SQL DATETIME to a PHP DateTime object.

• time: Type that maps an SQL TIME to a PHP DateTime object.

• datetime: Type that maps an SQL DATETIME/TIMESTAMP to a PHP
DateTime object.

• text: Type that maps an SQL CLOB to a PHP string.

• object: Type that maps a SQL CLOB to a PHP object using serialize() and
unserialize()

• array: Type that maps a SQL CLOB to a PHP object using serialize() and
unserialize()

• float: Type that maps a SQL Float (Double Precision) to a PHP double.
IMPORTANT: Works only with locale settings that use decimal points as
separator.

Arguments
• type: (optional, defaults to ‘string’) The mapping type to

use for the column.

• name: (optional, defaults to field name) The name of the
column in the database.

• length: (optional, default 255) The length of the column
in the database. (Applies only if a string-valued column
is used).

• unique: (optional, default FALSE) Whether the column is
a unique key.

• nullable: (optional, default FALSE) Whether the
database column is nullable.

• precision: (optional, default 0) The precision for a
decimal (exact numeric) column. (Applies only if a
decimal column is used.)

• scale: (optional, default 0) The scale for a decimal (exact
numeric) column. (Applies only if a decimal column is
used.)

Associations

• Relationships can be defined between entities
by using the following annotations on a
property:

• @ORM\OneToOne()

• @ORM\OneToMany()

• @ORM\ManyToOne()

• @ORM\ManyToMany()

• In addition, the relationship can also be:

• Unidirectional

• Bi-Directional

• Self Referencing

• Depends on whether you want both entities to
be able to access the other (not always a good
idea)

• Bi-Directional relationships will need an
‘owning’ side

Owning Side?
Doctrine will only check the owning side of an association for changes.

Bi-Directional
One to Many/Many to One

• The inverse side has to use the mappedBy attribute of the OneToOne,
OneToMany, or ManyToMany mapping declaration. The mappedBy
attribute contains the name of the association-field on the owning side.

• The owning side has to use the inversedBy attribute of the OneToOne,
ManyToOne, or ManyToMany mapping declaration. The inversedBy
attribute contains the name of the association-field on the inverse-side.

• ManyToOne is always the owning side of a bidirectional association.

• OneToMany is always the inverse side of a bidirectional association.

• The owning side of a OneToOne association is the entity with the table
containing the foreign key.

Bi-Directional
Many-to-Many

• You can pick the owning side of a many-to-
many association yourself.

Inheritance!

• If you like to use polymorphic classes in your
model (we really do), then you’ll love how
Doctrine can persist these classes to the
database either as:

• A single super table compromising of all the
columns required to cover all the child classes

• Or as separate tables per class, each with the
specific columns required for each entity.

• Doctrine will handle all the database actions
such as schema updates and CRUD actions to
the database.

• This is an advanced topic … for another time.

Getters and Setters

• All your classes will require the standard getters and
setters for each property that you wish to use, e.g.:

• $private postcode

• getPostcode()

• setPostcode($postcode)

• IDE’s can automatically generate these for you, but
beware when doing them on relationship properties as
Symfony expects add/remove/get vs. get/set

• addAddress($address)

• removeAddress($address)

• getAddress()

• Doctrine can automatically generate these with the
console command:

$ doctrine:generate:entities

• Although beware when using it on Polymorphic entities.

How to Sync the Model and the Schema

Development
• $ doctrine:schema:update

• It’s quick and dirty

• It will create and drop tables and data

• No rollbacks, no version control

• It will only update the schema (no data modifications)

• Do not use for anything but initial development.

Production
• $ doctrine:migrations:diff

$ doctrine:migrations:migrate

• Can modify the data (not just the schema) using SQL
commands and container aware high level logic
migrations

• Version control

• Beware! It does not support transactions during a
migration, it a migration fails halfway you could be left
with an unstable database. Always test with a recent
copy of the production DB before migrating!

Further Reading…

• Doctrine is a very powerful tool, it is also not
the most forgiving if you get things wrong.

• The documentation isn’t great but if you can
overcome this you can be rewarded with some
serious time savings.

Twig
Sweeter than Smarty

Twig

• Not just for HTML

• Templates can inherit and override others

• Can be ‘sandboxed’

• Supports

• Loops,

• Conditions

• Filters

Documentation

• Available at: http://twig.sensiolabs.org/documentation

• Easy to understand, concise

http://twig.sensiolabs.org/documentation

Variables

• In a twig template you use {{ }} to echo a
statement

• Imported objects can be accessed using the
key names so if you imported [‘form’=>$form]
into a template you can output $form by using
{{ form }}

• If $form is an array you can access key/value
pairs using the ‘.’ syntax. {{ form.url }}

• If form was an object you could access the
getter methods using the same ‘.’ syntax. {{
form.url }} would call $form->getUrl() and
$form->isUrl() on the object.

Expressions

• You can use expressions to modify variables,
twig supports a wide range of common
operators

• {{ 1 + 1 }} = 2

• {{ 1 and 0 }} = false

• {{11 % 7 }} = 4

• {{ 1 in [1, 2, 3] }} = true

• There are countless operators and expressions,
the documentation is very easy to digest and is
worth a read.

Macros

• Macros are a way of defining reusable code
within a template.

• Beware at using them as a twig should only
really be used at displaying data, keep business
logic outside of the templates.

• We find them useful for example with disabling
links (stripping the <a> tags from
commands that the user does not have
permission to use.

Filters

• On any expression you can apply a filter that
will take the result of an expression and output
the modified result. Filters are used by the ‘|’
syntax.

• There are a number of built-in filters, although
you can always create your own.

• Most of the built-in filters are shortcuts to PHP
functions, although it’s preferable to use them
in the twig templates rather than using the
PHP functions in the controllers/services.

• Examples on $form[‘price’] = 9.432599

• {{ form.price|number_format(2) }} = 9.43

• {{ form.price|abs }} = 9

• {{ form.price|round(1,’ceil’) }} = 9.5

Conditions

• Conditions work pretty much the same way in
PHP, except using the twig syntax.

• Use the {% %} syntax to escape from the
template into twig

{% if users|length > 0 %}
<p>User is logged in</p>

{% else %}
<p>User is not logged in</p>
{% endif %}

Loops

• Loops again work pretty much the same way
in PHP, except using the twig syntax.

{% for user in users %}

{{ user.username }}

{% else %}

No users

{% endfor %}

Service container
Because life isn’t always easy

Imagine

• We have a simple logging class that logs to a text file

• Fancy new Logging as a Service website comes along

• We now want to log to this LaaS website but our log class is directly used in
multiple classes and multiple projects

Dependency injection

Tightly coupled - bad

• Dependent upon other classes/modules

• Less flexible to change

• Cannot be shared amongst projects easily

• Changes cause a “ripple effect” because of
fragile design and deeply tangled code

Loosely coupled - good

• Remove dependencies of other classes/modules

• Flexible to change, different implementations
can be substituted – e.g. logger

• Functionality can be easily shared

• Separation of concerns leads to better, more
flexible design decisions

• Easier to test

Service Container

• Acts as a registry of classes

• Loads classes based on an ID, rather than the actual class

• The class behind an ID can be substituted for other classes with enhanced or
different functionality

• Injects the dependencies for each class directly, meaning the calling class
doesn’t have to pass them in itself.

• Classes are no longer tightly coupled

