VIVANT

Introduction to Symfony2

#symfony2workshop



Agenda

Tme |

09:00

10:00

Doors Open

Introduction to Symfony
Presentation (1:00 hour)

Workshop Part 1 (2:00 hour)
Lunch and Q&A (2 hour)
Workshop Part 2 (2:00 hour)

Close



® An MVC framework

. ® Maqic
What Symfony is not 2
® Written in French
® “Low Level” Code

® Only suitable for “Enterprise” applications



It is... a collection of pretty
awesome decoupled tools
for web app development...

25 to date




combine it with some other
independent tools and you
have a pretty epic HTTP
framework




CONFIG

REQUEST

EXCEPTION

EVENTS

LOGS

TIMELINE

ROUTING

FORMS

SECURITY

E-MAILS

DOCTRINE

MINIMIZE

Lol Profile for: GET Dy 1 at Wed. 14 May 2014 220

Timeline

Total ime 4378 ms
Initialization ime 1153 ms

Threshold 1 ms

Main Request - 3225 ms

)8:50 +0100

gefault [J] secion event_listener event_listener_loading template [ docrine [ prope!

kemel request ~2200 ms / ~ 125 MBE

Symfon\ComponentiHitpKernelEventListener\ProfilerListener ~ 328 ms /~ 152

m

Symfony\BundieFrameworkBundie\EventListeneriSessionListener~ S ms /~ 7 MB
Symfony\ComponenfiHttpKemelEveniListenerRouterListener ~ 193 ms / ~ 75 MB
Symfony\ComponentiHiipKemelEventListenerLocaleListener ~ 1 ms/~ 7.5 M8

o

Symfon\ComponentiSecurityHiip\Firewall ~ 1410 ms/~ 11.8 N

child_sedions

The Symfony Profiler

The not-so-secret weapon on every page to inspect every element of the web app



Symfony is also... a methodology

® Think of it to your code like an orthopaedic chair is to your back...

® Lastly it is a community... People that have adopted the methodology and
genuinely think this is a positive change



Doctrine

Pretty awesome when it works




Doctrine

DBAL

® PDO "“like”, it abstracts the database.

® Also supports management of schema, can

create, update and drop columns and tables.

® Supports: MySQL, Oracle, MSSQL,
PostgreSQL, SAP Sybase SQL Anywhere,
SQLite, Drizzle

ORM

Uses the DQL to query and manipulate the DB.

Provides an easy to use model for your
controllers and services to manipulate.

Uses annotations on properties within your
PHP model (entities) and relationships
between them to create and manage your
schema



Documentation

® Available at: http://docs.doctrine-project.org/projects/doctrine-
dbal/en/latest/reference/introduction.html

® Documentation is thorough but difficult to digest

® Caution: When Googling Doctrine related information, the results are
littered with older information.


http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/reference/introduction.html

Watch your namespaces in annotations

Doctrine Documentation Your Code in Symfony

use Doctrine\ORM\Mapping as ORM

/** /~k~k

* @OneToOne (targetEntity="Shipping") * @ORM\OneToOne (targetEntity="Shipping")
* @JoinColumn (name="shipping id", * @ORM\JoinColumn (name="shipping id",

* referencedColumnName="id") * referencedColumnName="id")

B/ */

private $shipping; private $shipping;



Using Doctrine to update your SQL Schema

® You have already defined your entities and attached annotations to the
properties

® Doctrine can keep your PHP Model and your SQL Schema in sync

® Relationships between entities have already been defined



Entities

_ _ use Doctrine\ORM\Mapping as ORM
® To mark a PHP class as being an entity you use Phas

_ _ /**
the @ ORM\Entity() annotation. * @ORMI\Entity
By default Doctrine will apply defaults such as * @ORM\Table(name="address")
setting the DB table name as the unqualified &
class name class CustomerAddress
You can override this by specifying your own { p

table name using @ORM\Table() annotation }



You can specify that a PHP class property to be
persisted to the database by using the
@ORM\Column annotation.

This annotation will assume defaults
(type=string), so it's always best to override.

All built in property types are portable across
databases.

Each property type can have specific attributes
depending on the nature of the property.

If all the built-in types do not fit your application,
you can build your own.

Property Mapping

use Doctrine\ORM\Mapping as ORM
/**

* @ORM\Entity

* @ORM\Table(name="address")

*/

class CustomerAddress

{

/*7’(
* @ORM\Column(name="postcode”,length="8")
*/

private $postcode



Types

string: Type that maps an SQL VARCHAR to a PHP string.

integer: Type that maps an SQL INT to a PHP integer.

smallint: Type that maps a database SMALLINT to a PHP integer.
bigint: Type that maps a database BIGINT to a PHP string.

boolean: Type that maps an SQL boolean to a PHP boolean.
decimal: Type that maps an SQL DECIMAL to a PHP double.

date: Type that maps an SQL DATETIME to a PHP DateTime object.
time: Type that maps an SQL TIME to a PHP DateTime object.

datetime: Type that maps an SQL DATETIME/TIMESTAMP to a PHP
DateTime object.

text: Type that maps an SQL CLOB to a PHP string.

object: Type that maps a SQL CLOB to a PHP object using serialize() and
unserialize()

array: Type that maps a SQL CLOB to a PHP object using serialize() and
unserialize()

float: Type that maps a SQL Float (Double Precision) to a PHP double.
IMPORTANT: Works only with locale settings that use decimal points as
separator.

Available Property Types

Arguments

type: (optional, defaults to ‘string’) The mapping type to
use for the column.

name: (optional, defaults to field name) The name of the
column in the database.

length: (optional, default 255) The length of the column
in the database. (Applies only if a string-valued column
is used).

unique: (optional, default FALSE) Whether the column is
a unique key.

nullable: (optional, default FALSE) Whether the
database column is nullable.

precision: (optional, default o) The precision for a
decimal (exact numeric) column. (Applies only if a
decimal column is used.)

scale: (optional, default o) The scale for a decimal (exact
numeric) column. (Applies only if a decimal column is
used.)



Assoclations

® Inaddition, the relationship can also be:

® Relationships can be defined between entities ® Unidirectional
by using the following annotations on a .

property:

® @ORM\OneToOne()
® Depends on whether you want both entities to

S lolany() be able to access the other (not always a good
®* @ORM\ManyToOne() idea)

Bi-Directional

® Self Referencing

* @ORMiManyToMany() ® Bi-Directional relationships will need an
‘owning’ side



Owning Side?

Doctrine will only check the owning side of an association for changes.

Bi-Directional
One to Many/Many to One

The inverse side has to use the mappedBy attribute of the OneToOne,
OneToMany, or ManyToMany mapping declaration. The mappedBy

The owning side has to use the inversedBy attribute of the OneToOne,
ManyToOne, or ManyToMany mapping declaration. The inversedBy

ManyToOne is always the owning side of a bidirectional association.
OneToMany is always the inverse side of a bidirectional association.

The owning side of a OneToOne association is the entity with the table
containing the foreign key.

attribute contains the name of the association-field on the owning side.

attribute contains the name of the association-field on the inverse-side.

Bi-Directional
Many-to-Many

® You can pick the owning side of a many-to-
many association yourself.



® If you like to use polymorphic classes in your
model (we really do), then you'll love how
Doctrine can persist these classes to the
database either as:

® Asingle super table compromising of all the
columns required to cover all the child classes

® Or as separate tables per class, each with the
specific columns required for each entity.

Inheritance!

Doctrine will handle all the database actions
such as schema updates and CRUD actions to
the database.

This is an advanced topic ... for another time.



Getters and Setters

® IDE's can automatically generate these for you, but
beware when doing them on relationship properties as
Symfony expects add/remove/get vs. get/set

All your classes will require the standard getters and ® addAddress(saddress)

setters for each property that you wish to use, e.g.: * removeAddress(saddress)

$private postcode ® getAddress()

EEs = oce( ® Doctrine can automatically generate these with the

setPostcode(spostcode) console command:

$ doctrine:generate:entities

® Although beware when using it on Polymorphic entities.



Development

$ doctrine:schema:update

It's quick and dirty

It will create and drop tables and data

No rollbacks, no version control

It will only update the schema (no data modifications)

Do not use for anything but initial development.

How to Sync the Model and the Schema

Production

$ doctrine:migrations:diff
$ doctrine:migrations:migrate

Can modify the data (not just the schema) using SQL
commands and container aware high level logic
migrations

Version control

Beware! It does not support transactions during a
migration, it a migration fails halfway you could be left
with an unstable database. Always test with a recent
copy of the production DB before migrating!



Further Reading...

® Doctrine is a very powerful tool, it is also not
the most forgiving if you get things wrong.

® The documentation isn't great but if you can
overcome this you can be rewarded with some
serious time savings.



Twig

Sweeter than Smarty




Twig

Not just for HTML
Templates can inherit and override others
Can be ‘sandboxed’

Supports
® Loops,
¢ Conditions

®  Filters



Documentation

® Available at: http://twig.sensiolabs.org/documentation

® Easy to understand, concise


http://twig.sensiolabs.org/documentation

Variables

® If $formis an array you can access key/value

® Inatwigtemplate you use {{}} to echo a pairs using the '." syntax. {{ form.url 3}

statement _
® If form was an object you could access the

Imported obje'cts can be accessed using the getter methods using the same .’ syntax. {f
key names so if you imported ['form’=>sform] form.url 3 would call $form->getUrl() and

into a template you can output $form by using sform->isUrl() on the object.
{{ form 1}



Expressions

You can use expressions to modify variables,

twig supports a wide range of common

operators

® There are countless operators and expressions,
the documentation is very easy to digest and is

{{1and o}} =false worth a read.

ffl1a%7=4
f{1in[z, 2, 3]} =true

$1+13=2



Macros

® Macros are a way of defining reusable code
within a template.

Beware at using them as a twig should only
really be used at displaying data, keep business
logic outside of the templates.

We find them useful for example with disabling
links (stripping the <a></a> tags from
commands that the user does not have
permission to use.



® On any expression you can apply a filter that
will take the result of an expression and output
the modified result. Filters are used by the |’
syntax.

There are a number of built-in filters, although
you can always create your own.

Most of the built-in filters are shortcuts to PHP
functions, although it's preferable to use them
in the twig templates rather than using the
PHP functions in the controllers/services.

Filters

Examples on $form['price’] = 9.432599
{{ form.price|number_format(2) } = 9.43
{f form.pricelabs}} =9

{{ form.price|round(z,’ceil’) 3} = 9.5



Conditions

% if users|length > 0 %3}
® Conditions work pretty much the same way in <p>User is logged in</p>

PHP, except using the twig syntax. % else %}

® Use the {9 %} syntax to escape from the <p>Us§r is not logged in</p>
template into twig {% endif %}



Loops

<ul>

96 for user in users %}

<li>{{ user.username }}</li>
® Loops again work pretty much the same way {% else %}
in PHP, except using the twig syntax. TN Ueers 2l
% endfor %}

<ul>



Service container

Because life isn't always easy




Imagine

® We have a simple logging class that logs to a text file
® Fancy new Logging as a Service website comes along

® We now want to log to this LaaS website but our log class is directly used in
multiple classes and multiple projects



Tightly coupled - bad

Dependent upon other classes/modules
Less flexible to change
Cannot be shared amongst projects easily

Changes cause a “ripple effect” because of
fragile design and deeply tangled code

Dependency injection

Loosely coupled - good

Remove dependencies of other classes/modules

Flexible to change, different implementations
can be substituted — e.g. logger

Functionality can be easily shared

Separation of concerns leads to better, more
flexible design decisions

Easier to test



Service Container

Acts as a registry of classes
Loads classes based on an ID, rather than the actual class

The class behind an ID can be substituted for other classes with enhanced or
different functionality

Injects the dependencies for each class directly, meaning the calling class
doesn’t have to pass them in itself.

Classes are no longer tightly coupled



